Ν	а	r	r	n	e	•
	u		•	•	L	•

|--|

HW PC 11 Ch 2.2 Trig Ratios of Sine Cosine and Tangent Functions

- 1. If $\sin \theta$ is equal to a negative ratio, then which quadrants will the angle be? What if the ratio is positive, which quadrant is it in?
- 2. If $\cos \theta$ is equal to a negative ratio, then which quadrants will the angle be? What if the ratio is positive, which quadrant is it in?
- 3. If $\tan \theta$ is equal to a negative ratio, then which quadrants will the angle be? What if the ratio is positive, which quadrant is it in?
- 4. If θ is in quadrant 3, then which trig ratio will be negative? $\sin \theta \cos \theta$ or $\tan \theta$?
- 5. If θ is in quadrant 4, then which trig ratio will be negative? $\sin \theta \cos \theta$ or $\tan \theta$?
- 6. Determine each trig ratio without using a calculator.

a) cos135°	b) tan 270°	c) sin120°
d) tan 135°	e) cos 225°	f) sin150°
g) $\tan 150^\circ$	b) $\sin(-300^\circ)$	i) cos180°
5, tai 100	ii) siii(=500)	

 A point ``P`` created by the endpoint of a terminal arm is on the circumference of an unit circle of radius 1. Given the angle in standard position, find the coordinates of point `P`.

8. Given each trig ratio, find the specified trig ratio without using a calculator:

a) $\sin\theta = 0.5$	b) $\cos\theta = \frac{-\sqrt{2}}{\sqrt{2}}$	c) $\tan \theta = -\sqrt{3}$
	2	
$\cos \theta -$		
	$\sin \theta =$	$\cos\theta =$
$\tan \theta =$	$\tan \theta =$	$\sin \theta =$
d) $\sin\theta = \frac{1}{\sqrt{2}}$	e) $\cos\theta = \frac{-\sqrt{3}}{2}$	f) $\tan \theta = \frac{1}{\sqrt{3}}$
$\cos \theta =$	$\sin \theta =$	$\cos \theta =$
$\tan \theta =$	$\tan \theta =$	$\sin \theta =$

9. Solve for θ , with $0 \le \theta \le 360^{\circ}$.

a) $\sin \theta = 0.8$	b) $\cos\theta = 0.85$	c) $\tan \theta = 0.3$

a) $\sin \theta = -0.9$	b) $\cos\theta = 0.125$	c) $\tan \theta = 0.25$

- 10. The point (-3,5) is on the terminal arm of angle θ in standard position. Find the angle in radians to one decimal place.
- 11. The angle θ is in the third quadrant and $\cos \theta = -\frac{4}{5}$. Draw a diagram to show the angle in standard position and then find the coordinates for "P"

12. If $\tan \theta = -\frac{2}{\sqrt{7}}$, angle θ is in standard position, and its terminal arm is in quadrant II. What is the exact value of $\cos \theta$?

13. If $\sin \theta = -\frac{2}{7}$, draw a diagram to show the angle(s) in standard position and the possible coordinates for point "P". Then determine the value(s) of $\cos \theta$ and $\tan \theta$

14. Point P(3,-5) is on the terminal arm of an angle in standard position. What is the value of $\sin\theta \times \cos\theta$?

15. What is the value of $\sin\theta \times \tan\theta$ if point P(1.957, -0.412) is on the terminal arm of a circle with a radius of 2 units long?

16. If $\cos\theta = \frac{2a}{3}$, then what is the value of $\tan\theta$ in terms "a"?